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Abstract

A method is described for reducing the solution of a matrix equation of linear equations,
Mz = d, to that of a number of simpler equations. The method is one mathematical version of
diakoptics, and can be used to solve engineering problems involving linear equations without
specialization to each individual application. The method has the usual advantages of di-
akoptics: different parts of the problem can be solved on different computers (distributed
computation), decreased computer storage requirements in fast storage, applicability to some
types of parallel processors and decreased computation time in some circumstances. Considera-
tion is given to reducing M to specific forms including block triangular, banded and the usual
block diagonal. Consideration is also given to the case where M is not square and a new
application is given to solving least-squares problems.

1. Introduction and notation

A system of equations, Mz = d, is sometimes in a form which could be solved by a fast solution
algorithm, if there were not some 'disturbing' non-zero entries in M. If these 'disturbing'
entries are placed in a matrix B, and M = A + B, then using the technique of tearing, the
solution of Mz = d can be related to the solution of the simpler system Az = d by equations
whose complexity depends on the rank of B.

The technique was originated in electrical engineering by Kron [31], and usually goes under
the name diakoptics. Applications of diakoptics in engineering were quite slow to develop, but
now there are numerous descriptions and announcements at conferences of applications, and of
extensions of various forms of the method. Most of these are connected to specific applications,
[5,7,11-17,20,23,24,27,28,31-35,37,39,41,42]. Diakoptics has been considered for use in parallel
computation or in distributed computer systems [10,30]. A few authors have considered the
basic mathematical techniques unconnected with specific applications [1,2,4,6,8,9,21,22,29,40],
but only for the case where M is non-singular. These mathematical results are mostly related,
but apparently not [1], to the formulae for the inverse of a sum of matrices, as described in [25].

Section 2 describes a simple mathematical form of the result, and summarizes some of the
established results. Section 3 considers specific forms of the reduced matrix A, with a simple
numerical example. Section 4 considers the cases where M is not square or not non-singular
and it includes a new diakoptic least-squares approach.

The letters A, B, M, X, Y, etc. denote matrices, while letters z, d, e, etc. denote column
matrices or column vectors, and 1 is used to denote an identity or unit matrix of appropriate
size. If B has order m x n and it has r non-zero columns, then B' denotes the order m x r
matrix containing all the non-zero columns of B. Zr, (A - 1),, etc. denote matrices of r selected
rows from z and A- ; these r rows are usually the rows in the same row position as are the r
non-zero columns in B. Similarly, (A- 1)n_, and z,_ r denote the (n - r) x n and (n - r) x 1
matrices of the rows of A -1 and z which are not contained in (A-1)r and z,. Partitioned
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matrices are denoted as in [AIX] or [F]. The blanks in the matrices used for numerical

illustrations indicate zeros. The abbreviation n.s. is used for 'non-singular', A* represents the
conjugate transpose of A, and A -1 represents the inverse of A and zT is the transpose of z.

2. Basic results on tearing

Suppose the n x n matrix M can be decomposed as M = A + B, where A is non-singular and B
has exactly r non-zero columns which are the columns of the n x r matrix B'. The following
results (1) and (2) are proved in the Appendix.

M is n.s. if and only if [1 + (A-1)rB'] is n.s., (1)

where (A-1), is the r x n matrix of those rows of A- 1 with the same row number as the
columns of B' in B.

The system Mz = d is equivalent to (both have the same solution or both have no solutions)

[1 + (A-1)B'r] zr = (A- 1)d, (2)

Zn-r= (A- 1)n_r(d- Brz,),

where z, is the vector of variables corresponding to the non-zero columns of B (the connecting
variables) and z,_- is the vector of remaining variables.

The efficient solution of the system (2) would be carried out by successively proceeding
along the following steps (A)-(E) (using any appropriate linear equation solution algorithm).

(A) Solve for the vector x: Ax = d, so that x = A -d.
(Note that solving equations is much more efficient than calculating
A-).

(B) Solve for n x r matrix X: AX= B, so that X= A - B'.
(This means solve the equation for each right-hand side of B' and put
together all the solutions as the columns of X).

(C) Solve for z, : (1 + Xr)z, = x,, where X, and x, consist of rows of X and x
corresponding to the variables in z,. (3)
Since (1 + X) = 1 + (A-1)rB' and x, = (A- 1)rd, then
z, = (1 + (A-)rB'r)-l(A-l)d.

(D) Calculate zn-r = x_ r - Xr ,rz, so that Zn- r = (A-l)._r(d- Bz,) as in
(2).

(E) Construct z from z, and z,n,.
Here x,, X,, xn_r and Xn_ r are the rows of x and X corresponding to
the rows of z contained in z, and Zn- r_

The advantages of this method arise because the solutions of the matrix equations in (A) and
(B) will be very fast if A has a special structure such as block diagonal or banded. In particular,
if A is block diagonal with A = diag[Al, A2 ,..., Ap], then the solution of the equation Ax = d,
for example, can be obtained by solving the much smaller systems Aix i = di, for i = 1,..., p,
where d is the appropriate part of d. The complete solution vector then is the composite

xP
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The third equation, (1 + Xr)Zr = x,, has an r X r coefficient matrix which will be small provided
r is small.

If M is n.s., then the inverse of M may be calculated in terms of A- l by the formula which
is proved in the Appendix:

M-' =A-'{1-B[1 + (A-1)rBr] (A-1)r}. (4)

This inverse may be efficiently calculated successively as follows:

solve for n x n matrix Y: A Y = 1,
solve for r x n matrix Z: (1 + YrB)Z = Y, (5)
calculate M-1 = Y(1 - BZ).

Here Yr consists of the rows of Y corresponding to the rows of z in z,.
The result (1) and result (2), when M is n.s., are special cases of more general results

contained in Bunch and Rose [9, §4], Steward [40], and Btickner [8, pp 448-449] and is related
to Kron's method [31] and to the Sherman-Morrison-Woodbury formula for the inverse of the
sum of two matrices [25]. The result (4) is a variation on the Sherman-Morrison-Woodberry
formula and is derived in the Appendix from equation (24) of [25] where the original references
are cited.

Notice, however, that (2) leads to a different formula for M-l which can be obtained from
the Sherman-Morrison-Woodbury formula with some difficulty, namely (using partitioned
matrix notation):

M = ( ( )r) ( )[1 + (A-1)rBr] l(A-)r. (6)

This formula assumes that the columns of M are ordered so that the r columns of B' occur last
and the remaining columns occur first in the column ordering from left to right, and similarly
for the row ordering. There will be computational advantages in using (6) rather than (4) in
some circumstances.

Generalizations of results (1) to (5) are given by (1') to (5') below.
Let M = A + B, where A is n.s., and suppose B has rank r (but not necessarily only r

non-zero columns). B has full-rank factorisation B = FDG, where F has order n X r, G has
order r n and both have rank r, and D is a full-rank diagonal matrix (see, for example,
Ben-Israel and Greville [3, p. 22]); D can be the identity matrix in order to simplify this.

M is n.s. if and only if D- 1 + GA-'F is n.s. (1')

The system Mz = d is equivalent to the system

(D- 1 + GA-1F)Yr = GA-d, (2')

z = A -d - A - Fy,,

where Yr is an r 1 vector of auxiliary variables related to z by yr = Gz. An efficient solution is
given by successively solving,

solve for x: Ax = d,
solve for X: AX= F,
solve for yr: (D 1 + GX)y,= x, (3')
calculate z: z = x-Xyr.
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Similarly,

M - 1 =A-[1 -F(D- 1 + GA-1F) GA-']. (4')

An efficient algorithm for calculating M- 1 is to successively solve:

solve for the n x n matrix Y: A Y = 1,
solve for the r X n matrix Z: (1 + GYF)Z= GY, (5')
calculate M- = Y(1 - FZ).

The proofs of (1') and (2'), being very similar to the proofs of (1) and (2), are omitted, and
the other results may be related to previously cited references.

If M is singular and possibly not square, then formulae (4) and (4') can be adapted to give
the generalised inverse matrix of M, which here means any matrix, denoted M-, satisfying
MM-M= M (see [3] for more details). Equation (4') becomes

M- = A - [1 - FD(D + DGA -FD)-DGA -] (7)

where A- and (D + DGA-FD)- are generalised inverses of the possibly singular matrices A
and (D + DGA -FD). This holds provided the row and column space of B = FDG are subsets
of the row and column spaces of A. The proofs of these formulae are without major difficulty
and are omitted.

The role of generalized inverses in equations is that Mz = d has a solution z = M-d,
provided a solution exists, and has general multiple solutions given by z = M-d + (1 - M-M)p,
for arbitrary vector p. (see [3]).

3. Exploiting a 'near'-banded or 'near'-block triangular structure

According to Bunch and Rose [9, §4,5] single-element tearing for symmetric matrices, M, is not
advantageous over other methods (and may be worse) unless additional structural information
is available for the matrix A, where M = A + B, such as A being banded, triangular, block
triangular or of other special form. These special forms of A are considered in more detail in
this section.

The opportunities of tearing in these cases include the following: (a) if A is block diagonal
or block triangular then it enables very large problems where M has appropriate structure to be
broken up into a number of simpler problems; (b) it enables a problem where M has only a
small number of non-zero entries outside of the special structure, such as banded, to be
converted into a problem with matrix having the special structure or conversion to a better
form of the special structure, such as reduced band width; (c) when A is block diagonal, it
enables different parts of the problem to be solved on entirely separate and independent
computers (steps (A) and (B) of (3)), with only the final parts requiring assembly of these
separate parts on a central computer (solving the r x r system in step (C) of (3) and other
minor calculations in (D) and (E)). In other words, there is substantial parallel computation
possible.

An example of type (b) is given, with operational counts, in example 6, Section (4) of Bunch
and Rose [9]. In order for tearing to be advantageous, even in these cases where M has special
structure, the number, r, of non-zero columns in B, where M = A + B, must be relatively small
compared with the size of M. That is, the solution of the r X r auxiliary systems, (1 + Xr), = r
(see equation (3)), must not approach the complexity of the direct solution of the original
problem Mz = d (Note that 1 + Xr may not be as sparse as was M).
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The problem of solving the system Az = d or of finding A - 1 when A is a non-singular
banded matrix (for some non-negative integer b, - b < i -j < b for all non-zero entries a of
A) has been investigated in great detail, especially for tri-diagonal systems. The solution is very
efficient because there is no fill-in of L during an LU factorization and only 5n multiplications
and divisions are required where A is n x n (see for example [26, §7.1]). For one method of
putting a matrix into a banded form, by rearranging rows and columns, see [18] or [191. Further
information is in [38]. For clarification purposes only, Examples 1 and 2 below provide simple
examples of the band-width reduction process and of the reduction of the system to two smaller
systems.

Another special case of Az = d, with a solution composed of a series of smaller problems,
occurs when Az = d has block triangular structure (aj = 0 for all j > i, or for all i >j, except
for those entries lying in some square contiguous non-overlapping diagonal block submatrices):

A=

The blocks may be single diagonal entries, and triangular matrices are special cases of this
form. The solution algorithm involves successively solving a system, whose coefficient matrix is
the diagonal block, for the variables associated with that block. The order of solving the blocks
is from upper left to lower right if A is lower block triangular and the reverse order if A is
upper block triangular. Duff and Reid [15] give an implementation of the fast algorithm of
Tarjan for converting a matrix into block triangular form and Steward [40] gives a not-so-fast
algorithm for choosing which elements to tear in order to reduce large diagonal blocks to a
number of smaller blocks in a block triangular matrix. The algorithms are illustrated in
Steward's paper, and the tearing process is a straightforward application of equation (2).

Example 1. Decreasing the bandwidth in Mz = d, when M is a banded matrix. Let M be given,
and A, B be chosen as follows:

M=

2 1
3 1 1

-1 1 1
2 1
1 2

1 1 1
1 2 -1 1

d=

2
1

-2
1
2
O
4

and choose

A=

2 1
3 1 1

-1 1
2 1
1 2

1 1 1
-1 1

B ' =

1 2

Zr [Z 4 , Z5 IT, Zn_ 4 [Z 1 Z2 Z3 Z6 Z7IT.

so

I

I
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Using (2) and (3), and using LU-factorization or any other algorithm, Ax = D and AX= B'
have solutions

x=[1 0 -2 0 1 -2 2]1 ,2 I X=O 0 0 0 -1 020 0 0 0 - 1

Hence (1 + X,)z, = x, (see equation (3)) becomes z, = x, = [0 1]T
.

Zn-r = Xn-r - Xn-rZ r becomes zr = [1 0 -2 -5 3]T [o 0 0

znr=[1 0 -2 -2 2]T

and the complete solution is

z= [1 0 -2 0 1 -2 2]T

Example 2. Separating Mz = b, where M is a banded matrix, into two similar problems and an
auxiliary problem.

Take M and d as above and choose

2 1
3 1

-1
1
1 1

2
2
1 1 1
2 -1 1 

00
00
00
0 1
1 0
00
1 0

zi

Z2

Zn-r = Z3

Z6

Z7

Ax = d and AX= Br each separate into two parts:

Al X1 = dl, A2 x2 = d2, AX 1 = Bl, A2 X2 = B,

where

-1 1 1 1

2

I 0
B2= [0 ° ]

1 0

Solutions by any convenient algorithm are

x1=[ 1 - flT
00 olT

1 I 
2 2

o o
X2= = 4r

(1 + Xr)z = x r becomes [1 z 5 [

So

-1 1]T .

d2 = o

4 2

O O

0 1

Z' = [ Z4 1Br =

3
Al 1

2 = 1 221 , X 
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and

Znr = X,, r- X rZ becomesZnr = [ 1 - 2 ½]T [_ 1 2 0 0 ]T

or Znr= [1 0 -2 -3 ½]T. The complete solution is z=[1 0 -2 0 1 - ]T

4. Tearing when M is not square, and least squares

Extensions of the tearing process can be used in the cases where M is not square. Consider first
the system Mz = d where M has order m x n with m < n. Assume that, after rearranging
columns if necessary, the first m columns of M are decomposed as A + B, so that in
partitioned form M = [A + B I E], and correspondingly z = [z, Z Z,_m]T. If B has r non-zero
columns where r is small compared with m, while A is n.s. and has a special structure which
allows quick solutions of equations of which it is coefficient matrix, then a useful reduction
formula similar to equation (2) is as follows:

Mz = d, or [A + B I E] = d is equivalent to [1 + (A-1), Br] z, = (A- 1 )r(d- Ezn_m),

Zm- r = (A- 1)m_,(d- Brz, - En-m),

where B' consists of the r non-zero columns of B, (A-1)r and z, are the r rows of A-1 and Zm

corresponding to the non-zero columns of B, while (A- 1)m_, r and z_- are the remaining rows
of A-' and z,. A generalization of result (8) in the form of equation (2') is also possible but is
not given here.

Notice that A + B is n.s. if and only if [1 + (A-1),rB] is n.s., by equation (1), in which case
Z-_, becomes simply a vector of arbitrary parameters in (8). If (1 + (A-1)rBr) is singular, or it
is not known that 1 + (A -1),Br is n.s., then the solution becomes more complicated because
the vector Zn m must now be chosen so that any linear dependence of the rows of 1 + (A 1),B'
is also a linear dependence of (A- 1 )r(d- Ezn_m).

An efficient solution algorithm of (8) for the case where A + B, and so 1 + (A-1)rBr, are
n.s. is a simple adaption of (3). A proof of (8) is given in the Appendix.

This completes the consideration of the case of fewer equations than variables. In a similar
way formulae can be given for the solution where there are more equations than variables.
However, in such large equation systems derived from a physical model, using data from the
actual physical situation, the system would almost always be inconsistent. Such inconsistencies
can result from inaccuracies in the data and because of the imperfect fit of the mathematical
model with the physical situation being modelled. This limits the usefulness of this method. The
least-squares approximate solution of Mz = d is usually used in such cases and can be found
using well known theory. That is, if M is m x n with m > n then the least-squares solution of
Mz = d is given by a solution of the system with symmetric matrix M*M:

(M*M)z = M*d, (9)

where M* is the conjugate transpose of M. If M has rank n, then M*M is non-singular, so
that the least-squares solution is unique, and the solution of (9) by LU-decomposition or other
usual method is particularly simple since the method is stable under any feasible pivoting order,
and requires fewer operations than the non-symmetric case. In many cases, a better solution
method for least-squares problems is by singular-value decomposition as discussed in [36].

Unfortunately the coefficient matrix M*M in (9) usually has a lot of fill-in and is not
suitable for diakoptic solution methods. However, a diakoptical solution can be carried out in
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two stages as follows. Assume M is m X n with m > n and M = A + B, where A has a structure
as shown with nonzero blocks, Di, which have at least as many rows as columns:

Di
D2 0

(10)

0
DP

Assume B has only r non-zero columns which together form the m x r matrix B'. Hence (9)
can be written

M *Az + M *Bz = M*d, M*A is now square.

The diakoptical solution using formulae (2) is given by

(1 + [(M*A)1] M*B'r)Zr = [(M*A)1] M*d (11)

and

Zn-r= [(M*A) - ] n_,(M*d-M*Brzr). (12)

The only additional difficulty in solving (11) and (12) is in dealing with (M*A)-1, and this
can be dealt with by working with a transposed form of (M*A) - 1, as follows:

(M*A) 1 = ([(M*A)*] 1)* (since for any matrix C, (C*)- = (C-)*)

= [(A*M) 1]*.

Consider, temporarily, the unconjugated matrix (A*M) - 1,

(A*M)-l = [A*(A + B)] -1 = (A*A + A*B)- 1.

Note that A*B will have the same zero columns as B, and (A*B)' = A*B r. Using formula (4)
(or (6) can be used in a similar way)

(A*M)- = (A*A)1(l -A*Br(1 + [(A*A)1] rA*B') -[(A*A)- l}, (13)

and so, taking the conjugate, using the fact that ([(A*A)-l],r)* = [(A*A)-']',

(M*A)- = [(A*M)-']*

= 1-[(A*A) -] r(1 + [B']*A[(A*A) 1] ) -[B']*A(A*A) 1. (14)

Substitution of (14) into (11) and (12) gives the complete result. Notice that, in (14), (A*A) - 1

can be calculated in terms of the separate blocks, D,, of A, since by (10), A*A =
diag[D*D, D*D2 ,..., D*Dp] (i.e. the block diagonal matrix with blocks D*D,,..., D*Dp) and
(A*A)-l = diag[(D 1D,) - ' ..., ( D*Dp)- ].



Diakoptics as a general approach in engineering

The rather complicated formulae (11), (12), (13) and (14) have a relatively simple solution
algorithm as follows, where M has size m x n and A1 = D*D1 , A2 = D*D2,..., Ap = D*Dp:
(a) calculate Ai = D*D i, B=A A and Ci= Di*[Br'] for i= 1,...p, where [Br]i is the block
of rows of B' corresponding in position to the rows of Di in A;
(b) calculate the matrices E of size n i x r, where ni is the number of columns of Di,

Ei = BiCi, for i = 1,... p, (so that Ei = (Di*Di) lD*[B']i);

Form the composite matrix, E = (A*A)-lA*B' of size n X r

0 E2 1

(c) solve the system of equations for the r x r matrix

[1 + (E,)] F= M*Br,

[1 + (Er)*] f= M*d

(so F= (1 + (B')*A[(A*A)- 1 ]r)- 1M*Br, and r-vector f= (1 + (Br)*A[(A*A)-]')- 'M *d);
(d) solve the r X r system for zr to give the formula of equation (11),

(1 +F)zr=f;

(e) calculate, using equation (12), the remaining z-variables

Zn-r = (Enr)*(M*d - M*Br'zr);

(f) form the solution vector z from zr and z_ -,.
The solution time of a state-estimation problem using formulae (11) to (14) using steps (a) to

(f), is most dependent on the calculation of the inverses of the blocks Ai in step (a). Each such
block of size d x d requires approximately d3 multiplications so that p equal blocks would
require about p(n/p)3 = n3 /p2 such operations. In comparison direct solution by LU-decom-
position of the full n x n system of equations (9) requires about (1/3)n3 operations, plus the
multiplication required to form the products M*M and M*d of about n3 operations. However,
sparse-matrix methods or other more efficient least-squares solutions show that computation
time-savings by the diakoptics method may be small or non-existent in a least-squares solution
on a single computer.

However, the method can save computer storage and can be very effective on a distributed
computer system where the individual calculations for i = 1, 2,..., p in steps (a) and (b) are
carried out on different computers, perhaps in different areas of an electrical system. The
information from the separate computers would only have to be brought together to complete
the solution in steps (c), (d), (e), and (f). However, the last four steps involve a relatively small
part of the solution computation provided r is not too large. The most computation occurs in
step (c) when solving r + 1 systems of linear equations, each with the same r x r coefficient
matrix. If LU-decomposition were used then this would involve roughly (1/3)r3 multiplica-
tions for the LU-decomposition and roughly r3 for the forward and backwards substitutions
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giving a total of (4/3)r3 . There is also another r X r system of equations in step (4) using about
another r3/3 operations.

Appendix

Proof of (1)

Assuming A is n.s., M=A + B is n.s. if and only if 1 +A- 1 B is n.s., if and only if
1r + (A -),B has linearly independent rows, (where r and (A-1), are the rows of 1 and A - 1
corresponding to the nonzero columns of B) since 1 +A- B differs from r + (A-)rB by
having extra rows each with a single non-zero entry in a zero column of r + (A - )rB. Finally,
ir + (A-')rB has linearly independent rows if and only if 1 + (A -)rBr is n.s., since the two
differ only by zero columns, thus proving (1).

Proof of (2)

When M is singular or n.s. Mz = d or (A + B)z = d is equivalent to z +A-'Bz = A -d, and
using Bz = Brzr, and separating into subsets of r rows and of (n - r) rows, is equivalent to

zr+ (A-l)rBrZr= (A-')rd,

Zn-r+ (A-l)nrBrzr= (A-')n-rd,

from which the result (2) follows.

Proof of (4)

(A + B) - ' = (A + BA-A) - ' = (A-')(1 + BA-') - ' =A-[l1 + Br(A-)r] -1,

and by formula (24) of [25], with A = 1, U= 1, B = B r, V= (A -1)r

(A +B)- =A-l{ - Br[i + (A-'1)rB]-l(A-1) }

Proof of (8)

The system Mz = [A + B I E]z = d is equivalent to

A-'[A +BIEI[ Zm =A -d,

and to (1+A-'B)zm+A-1Ez,,_, =A-ld, and to m+A- lBrz,+A- 1Ez,_,m=A-ld, since
Bzm = Brzr. This is equivalent to the r rows given by

Zr + (A-l)rBrzr + (A-1)rEzn-m = (A-l)rd,
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and the remaining m - r rows

Zmr+ (A- 1 )mBrzr + (A 1 )m-rEzn-m= (A- 1 )m_rd.

This completes the proof of (8).

References

1. P.W. Aitchison: Diakoptics or tearing - a mathematical approach, Quarterly of Applied Mathematics 41 (1983)
265-272.

2. H. Asai and M. Tanaka: Diakoptics: multi-level tearing method and estimation of the computation time,
Proceedings of International Symposium on Circuits and Systems, 1984, Vol. 1, IEEE, New York (1984) 364-367.

3. Adi Ben-Israel and T.N.E. Greville: Generalized Inverses: Theory and Applications, Wiley, New York (1974),
reprinted by Krieger (1980).

4. M.V. Bhat and H.K. Kesaven: Diakoptic equations and sparsity, IEEE PES Summer Meeting, Anaheim (1974);
IEEE (1974) paper C74.384-4.

5. M.D. Bradshaw: An electromagnetic analog to the method of diakoptics (Kron's 'tearing technique') of circuit
analysis, 23rd. Midwest Symposium on Circuits and Systems, Toledo (1980) 562-566.

6. A. Brameller, M.N. John and M.R. Scott: Practical Diakoptics for Electrical Networks, Chapman and Hall, London
(1969).

7. A. Brameller and K.L. Lo: The application of diakoptics and the escalator method to the solution of very large
eigenvalue problems, International journal for Numerical Methods in Engineering 2 (1970) 535-549.

8. H.F. Biickner: Numerical methods for integral equations; in: Survey of Numerical Analysis, McGraw-Hill, New
York (1962).

9. J.R. Bunch and D.J. Rose: Partitioning, tearing and modification of sparse linear systems, Journal of Mathematical
Analysis and Applications 48 (1974) 574-593.

10. G. Cafaro, P. Pugliese and F. Vacca: Parallel solution of turn networks, International Journal of Electrical Power
and Energy Systems 6 (1984) 131-138.

11. C.F. Chen and K.U. Wang: Diakoptics for eigenvalues of large scale networks, 23rd Midwest Symposium on
Circuits and Systems, Toledo (1980); North Holland, California (1980) 572-574.

12. L.O. Chua and L. Chen: Diakoptic and generalized hybrid analysis, IEEE Transactions on Circuits and Systems 23
(1976) 694-705.

13. J. Constantinescu: Study of the transient processes in large-scale power systems, Revue Roumaine des Sciences
Techniques (Serie d'Electrotechnique et Energetique) 27 (1982) 211-227.

14. P. Cristea and M. Iordache: A diakoptic analysis method, IEEE International Symposium on Circuits and Systems
(1983), IEEE, New York (1983) 633-636.

15. I.S. Duff and J.K. Reid: An implementation of Tarjan's algorithm for the block triangularization of a matrix,
ACM Transactions on Mathematical Software 4 (1978) 137-147 and 189-192.

16. M. El-Marsafawy, R.W. Menzies and R.M. Mathur: New diakoptic technique for load-flow solution of very large
power-systems using the bus admittance matrix, Proc. Institution of Electrical Engineers 126 (1979) 1301-1302.

17. T. Fukao and E. Teratsuji: An extension of diakoptics and its application to singular decomposition problem of
networks, Electrical Engineering in Japan 102 (1) (1982) 141-148.

18. A. George and J.W. Liu: Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall, New Jersey
(1981) Ch. 4.

19. N.E. Gibbs, W.G. Poole and P.K. Stockmeyer: An algorithm for reducing the band width and profile of a sparse
matrix, SIAM Journal of Numerical Analysis 13 (1976) 236-250.

20. G. Goubau, N.N. Puri and F.K. Schwering: Diakoptic theory for multi-element antennas, IEEE Transactions on
Antennas and Propagation 30 (1982) 15-26.

21. I.N. Hajj: Diakoptics and block elimination, IEEE 1978 Summer Power Meeting at Los Angeles, paper A78, 564-7.
22. I.N. Hajj: Sparsity considerations in network solution by tearing, IEEE Transactions on Circuits and Systems 27

(1980) 357-366.
23. H.H. Happ: The application of diakoptics to the solution of power system problems, in: Electrical Power Problems,

The Mathematical Challenge, SIAM (1980) 69-103.
24. H.H. Happ: Piecewise Methods and Applications to Power Systems, John Wiley, Chichester (1980).
25. H.V. Henderson and S.R. Searle: On deriving the inverse of a sum of matrices, SIAM Review 23 (1981) 53-60.
26. P. Henrici: Discrete Variable Methods in Ordinary Differential Equations, John Wiley, New York (1962).
27. P.B. Johns and K. Akhtarzad: Time domain approximations in the solution of fields by time domain diakoptics,

International Journal for Numerical Methods in Engineering 18 (1982) 1361-1373.

57



58 P. W. Aitchison

28. H.K. Kesaven and J. Dueckman: Multi-terminal representations and diakoptics, Journal of the Franklin Institute
313 (1982) 337-352.

29. A. Klos: What is diakoptics? Electrical Power and Energy Systems 4 (1982) 192-195.
30. I.N. Kotarova and O.Yu. Shamaeva: A parallel diakoptics method of solving complex problems on distributed

computational systems, Cybernetics 15 (1979) 131-141.
31. G. Kron: Diakoptics - piecewise solution of large scale systems, The Electrical Journal, in 20 parts from 158 (1957)

1673-1677 to 162 (1959) 431-436.
32. B. Majundar and T.N. Saha: Diakoptic approach to symmetrical short circuit analysis, Journal of the Institution of

Engineers (India), part EL, Electrical Engineering Division 61 (1980) 1-4.
33. S.Y. Mansour, D.H. Kelly and D.O. Koval: Diakoptical active-reactive dispatch of generation, Proceedings of the

1984 IEEE International Symposium on Circuits and Systems, Vol. 1, IEEE, New York (1984) 136-139.
34. O.W. Marcus, K. Reiss, B.X. Weis and Z.P. Tomaszewski: Basic considerations on an adaptive iteration algorithm

for large scale network analysis, Proceedings of the 1983 IEEE Symposium on Circuits and Systems, Vol. 1, IEEE,
New York (1983) 230-233.

35. J. Myslik: Diakoptical analysis of the networks considering the changes of branch impedances, Electrotech. Obz.
(Czechoslovakia) 73 (1984) 196-200.

36. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling: Numerical Recipes: the Art of Scientific Computing,
Cambridge University Press, Cambridge (1986).

37. N.B. Rabatt and H.Y. Hsieh: A latent macromodular approach to large-scale sparse networks, IEEE Transactions
on Circuits and Systems 23 (1976) 745-752.

38. J.K. Reid: A survey of sparse matrix computation, in: Electrical Power Problems: the Mathematical Challenge,
SIAM (1980) 41-68.

39. A. Sangiovanni-Vincentelli, L. Chen and L.O. Chua: A new tearing approach-node tearing nodal analysis,
Proceedings of 1977 IEEE International Symposium on Circuits and Systems, IEEE, New York (1977) 143-147.

40. D.V. Steward: Partitioning and tearing of systems of equations, SIAM J. Numerical Analysis, Series B, 2 (1965)
345-365.

41. P.K.U. Wang and C.F. Chen: Sensitivity calculation and network optimization through decomposition, Pro-
ceedings of 1983 IEEE Symposium on Circuits and Systems, Vol. 3, IEEE, New York, (1983) 1034-1037.

42. F.F. Wu: Solution of large-scale networks by tearing, IEEE Transactions on Circuits and Systems 23 (1976)
706-713.


